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Abstract

Existing models for classifying medical abstracts
lacks improved contextual understanding of the ab-
stracts, falling short in capturing context nuances,
leading to suboptimal outcomes. Our approach fuses
the current architecture with the improved contex-
tual understanding resulting in better classification
of medical abstracts. This improved contextual un-
derstanding is the consequence of change in architec-
ture, which now uses the advanced pre-trained model
of Google Bert. By integrating the powerful pre-
trained BERT model [Devlin et al., 2019], our ar-
chitecture gains a superior understanding of complex
relationship and meaning within text. Thus more ac-
curate and robust classification of medical abstracts
is achieved, by this improved contextual understand-
ing.

1 Introduction

An enormous amount of knowledge is contained
within an ever-increasing corpus of scholarly arti-
cles. Bio-medical paper form a significant portion of
scientific publication in this ever-expanding corpus.
[National Library of Medicine, 2025, 2023, Elsevier,
2025]. This increase in number has also propelled the
increase in the heterogeneity of the bio medical liter-

∗These authors contributed equally to this work.

ature, which is now not only limited to the scholarly
article, but also spans other formats like clinical trial
reports, electronic health records (EHRs), systematic
reviews, and clinical practice guidelines.

The traditional method for the researchers was to
quickly skim through abstracts to find if paper is
of interest to them, but this approach has lost its
usefulness, due to main two reasons. One reason
is the large amount of papers present now, which
makes such skimming time-consuming and resource-
intensive. Second reason is the unstructured nature
inherent to many papers in which abstract is not clas-
sified by its author making information to be searched
very difficult to find. If such large knowledge reserve
is to be made useful, new methods of making use
of abstract shall be employed.[Dernoncourt and Lee,
2017]

This new method, aimed at improving the acces-
sibility of the text makes use of NLP, to classify
the sentences in the abstract to appropriate head-
ings like objectives, methods, results and conclusion,
making finding useful information easier. This paper
propose such method by making use of multi-input
architecture that integrates information from three
sources, dimensional contextual embeddings derived
from a pre-trained Google BERT model [Devlin et al.,
2019], sequence representations learned from char-
acter embeddings via a Bidirectional LSTM [Graves
and Schmidhuber, 2005], and explicit positional fea-
tures indicating the line number and total number of
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lines within an abstract. These features streams are
concatenated and fed into model for final classifica-
tion. We evaluate our proposed model on PubMed
RCT collection dataset [Dernoncourt and Lee, 2017].

2 Related Work

Automatic sentence classification is an important
task in the field of biomedical natural language pro-
cessing which is used in structured information ex-
traction and other downstream tasks application such
as evidence synthesis, clinical decision support, and
biomedical information retrieval.

Traditional machine learning models were founda-
tional in this field which included support vector ma-
chines [Kim et al., 2011, Liakata et al., 2012, Vapnik,
1998], Naive Bayes classifiers [Agarwal and Yu, 2009,
Liakata et al., 2008, McCallum and Nigam, 1998],
and random forest methods [Subramanian and Hval,
2016, Breiman, 2001]. These traditional methods re-
quired manual creation of text features(handcrafted
features) such as term frequency–inverse document
frequency (TF–IDF) vectors [Salton et al., 1975,
Jones, 1972], n-grams [Brown et al., 1992, Shannon,
1948], part-of-speech tags [Church, 1988, Cutting
et al., 1992], and shallow linguistic patterns [Hearst,
1992, Finn and Krause, 2006]—to capture discrim-
inative cues for sentence role classification. While
those approaches achieved respectable performance
on benchmark datasets [Pang et al., 2002, Maas et al.,
2011, Li and Roth, 2003], they still lacked in mod-
eling longer-range semantic dependencies and subtle
contextual nuances across sentences [Turney, 2001,
Dasgupta and Ng, 2007, Řeh̊uřek and Sojka, 2011].
Due to drawback of capturing deeper semantic con-
text the research shifted toward neural networks that
learned hierarchical features from data on their own.
[Collobert et al., 2011, Mikolov et al., 2013, Goldberg
and Levy, 2014, LeCun et al., 2015, Bengio et al.,
2003].

Recent progress in biomedical natural language
processing has overwhelmingly been favored by deep
neural network and transformer-based approaches
Vaswani et al. [2017]. Franck Dernoncourt and Ji
Young Lee [Dernoncourt and Lee, 2017] first em-

ployeed a hybrid CNN + LSTM architecture to the
PubMed 200K RCT dataset, showing substantial in-
crease in the accuracy. Shortly after Dernoncourt et
al. [Dernoncourt et al., 2016] introduced a joint ANN
+ CRF model that optimized token and sequence
level features simultaneously, resuting in improved
consistency in section labeling. This deep learning
based approaches were further accelerated by use of
transformer based, domain specific pre-trained lan-
guage models. [Beltagy et al., 2019] demonstrated
that making use of unsupervised pretraining on spe-
cific texts , as done is SciBERT model can boost
performance on biomedical NLP task by several F1
points. BioBERT [Beltagy et al., 2019] furher re-
fined this approach by pretraining on PubMed ab-
stracts and full-text articles, acheiving state of art
accuracy on sentence classification benchmarks. [Lee
et al., 2019] In more recent times, PubMedBERT was
retrained from scratch , solely on PubMed data out-
perfoming other variants by 2-3%. [Gu et al., 2021]

While these powerful architectures deliver near hu-
man perfection level, their need of large computa-
tional resources for training and inference, still re-
mains a hindrance in low-compute resource environ-
ments. Our work presents a simple forward ANN
architecture with an accuracy of 90% on PubMed
dataset that is less resource expensive and can work
in low-compute environments.

3 Model

3.1 Overview of the Architecture

We designed a multi-input neural network architec-
ture to serve as computationally efficient model for
sentence classification on the PubMed 200k RCT
Dataset[Kim et al., 2011, Liakata et al., 2012].The
model structure effectively integrates deiverese fea-
tures including token-level embeddings from a
pre-trained BERT model, character-level represen-
tations, and abstract-specific positional informa-
tion(sentenece line number and total lines in the ab-
stract). These inputs are processed through special-
ized branches and afterward combined and fed into
subsequent dense layers to final classification.
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3.2 Input representation

The model uses four distinct input representations
for each sentence, processed in parallel branches.

3.2.1 Token Input

To obtain a fixed-dimension that encapsulates the se-
mantic meaning of the text, the input goes through
BERT pre-processing step before being given as in-
put to the pre-trained BERT model whose weights
are kept frozen during training.

3.2.2 Character Input

Sequence of characters is generated by raw sentence
text , which are then indiced by a TextVectorization
layer. These indices are embedded using a learnable
matrix Wchar emb ∈ R(|Vchar|+1)×dc , where |Vchar| is
the size of the character vocabulary and dc is the
character embedding dimension.

For each position j, the character embedding vec-
tor is computed as

wj = Wchar emb[xj ] ∈ Rdc .

This results in a sequence of character embedding
vectors Wchar = (w1, . . . ,wnc) ∈ Rnc×dc . This se-
quence can also be viewed as a matrix:

Wchar =


w1

w2

...
wnc

 ∈ Rnc×dc .

3.2.3 Total Line Number Input and Line
Number Input

The total number of sentences in the abstract is rep-
resented as one hot encode vector and same is done
for line number input to show sentence’s relative po-
sition.

3.3 Processing Branches

After the initial input representation , each represen-
tation is passed through a dedicated branch of the
network to extract relevant features before they are
eventually combined.

3.3.1 Token Processing Branch

The pooled output vector from the pre-trained BERT
model, which represents the sentence high-level se-
mantic features is processed through as sequence of
two fully connected(dense) layers. RELU activation
function is utilized in both dense layers. This branch
synthesizes the representation suitable for combina-
tion with features of other branches.

The pooled output vector generated from the pre-
trained BERT model, which is to be later processed
by dense layer is denoted as vBERT ∈ RdBERT .

The first dense layer computes:

z1 = W1vBERT + b1

where W1 ∈ Rh1×dBERT is the weight matrix, b1 ∈
Rh1 is the bias vector, and h1 is the number of units
in the first layer.

The activation is then applied:

a1 = ReLU(z1) = max(0, z1)

The second dense layer computes:

z2 = W2a1 + b2

where W2 ∈ Rh2×h1 is the weight matrix, b2 ∈ Rh2

is the bias vector, and h2 is the number of units in
the second layer.

The final output of the token processing branch is:

a2 = ReLU(z2) = max(0, z2)

3.3.2 Character Processing Branch

The sequence of character embeddings is passed
through the Bidirectional Long Short-Term
Memory(Bi-LSTM) network [Graves and Schmidhu-
ber, 2005], allowing the model to learn contextual
dependencies in both forward and backward direc-
tion. The Bi-LSTM layers are made up of 256 units
and are set to capture sequential and contextual
information at the character level in both forward
and backward direction along the sentence. This
layer syntehizes a fixed-size vector representing
aggregated character level features of the sentence.
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For the forward pass, the LSTM computes hidden
states h⃗t for t = 1, . . . , nc:

−→
h t =

−−−−→
LSTM(wt,

−→
h t−1)

For the backward pass, the LSTM computes hidden

states
←−
h t for t = nc, . . . , 1:

←−
h t =

←−−−−
LSTM(wt,

←−
h t+1)

At each time step t, the forward and backward hidden
states are concatenated to form the combined hidden
state ht:

ht = [
−→
h t;
←−
h t] ∈ R2dLSTM

where dLSTM is the dimensionality of each LSTM’s
hidden state (256 in this implementation).

3.3.3 Positional Feature Processing

The one-hot encoded positional features, namely the
line number and the total line number in the ab-
stract,are processed through the seperate, small feed-
forward networks. Each of these input are connected
to two dense layers with ReLU activation. [Nair and
Hinton, 2010]. This layer helps in learning the posi-
tional information.

3.3.4 Line Number Processing

The line number input is a one-hot encoded vec-
tor representing the position of the current sentence
within the abstract.

Input: One-hot encoded vector vline ∈ RDline (e.g.,
Dline = 15

The first dense layer computes:

zline,1 = Wline,1vline + bline,1

where Wline,1 ∈ R128×Dline and bline,1 ∈ R128.
ReLU activation is applied:

aline,1 = ReLU(zline,1)

resulting in aline,1 ∈ R128.
The second dense layer then computes:

zline,2 = Wline,2aline,1 + bline,2

where Wline,2 ∈ R64×128 and bline,2 ∈ R64.
Applying ReLU activation again yields the output

of the line number branch:

oline = ReLU(zline,2)

with oline ∈ R64.

Total Line Number Processing

Similarly, the total line number input is a one-hot
encoded vector representing the total number of sen-
tences in the abstract. Input: One-hot encoded vec-
tor vtotal line ∈ RDtotal line (e.g., Dtotal line = 20 as per
the paper’s example values from Source [48]).

The first dense layer computes:

ztotal line,1 = Wtotal line,1vtotal line + btotal line,1

where Wtotal line,1 ∈ R128×Dtotal line and btotal line,1 ∈
R128.

ReLU activation is applied:

atotal line,1 = ReLU(ztotal line,1)

resulting in atotal line,1 ∈ R128.
The second dense layer computes:

ztotal line,2 = Wtotal line,2atotal line,1 + btotal line,2

where Wtotal line,2 ∈ R64×128 and btotal line,2 ∈ R64.
Applying ReLU activation again yields the output

of the total line number branch:

ototal line = ReLU(ztotal line,2)

with ototal line ∈ R64.

3.4 Feature Combination and Classi-
fication

After processing through the respective branches, fea-
tures extracted from the token, character and posi-
tional information(line number and total line num-
bers) are combined and passed through the subse-
quent layers for final classification.

The output vector from the token processing
branch(derived from the BERT model) and the out-
put vector from the character processing branch(
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the aggregated Bi-LSTM model output) are concate-
nated to form a combined feature vector, through use
of the gating mechanism, Which is described below:

Following the independent processing in the token
and character branches, which yield representations
vBERT processed (from the token branch with h2 = 256
units) and hchar (from the character BiLSTM, with
2 × lstm units units), the model employs a mutual
gating mechanism. This allows for a refined, context-
aware fusion of semantic and character-level informa-
tion.

1. Character-to-Token Gating: The character
representation hchar is used to compute a gate
gc→t that modulates the token representation:

gc→t = σ(Wcthchar + bct)

where Wct is a weight matrix for a dense layer
(transforming hchar to dimension h2 = 256), bct
is its bias, and σ is the sigmoid activation func-
tion. The gated token representation is then:

v′BERT processed = vBERT processed ⊙ gc→t

where ⊙ denotes element-wise multiplication.

2. Token-to-Character Gating: Similarly, the
token representation vBERT processed computes a
gate gt→c for the character representation:

gt→c = σ(WtcvBERT processed + btc)

where Wtc is a weight matrix for a dense layer
(transforming vBERT processed to dimension 2 ×
lstm units), btc is its bias. The gated character
representation is:

h′
char = hchar ⊙ gt→c

The two gated representations, v′BERT processed and
h′
char, are concatenated:

ftc gated = concatenate(v′BERT processed, h
′
char)

The output of the dropout layer(representing the
combined and processed token and character fea-
tures), the output of the line number branch, the

output of the total line number branch are concate-
nated to form the final feature vector.

To integrate the processed token-character repre-
sentation dtc, the line number representation oline,
and the total line number representation ototal line,
the model utilizes the attention mechanism proposed
in the [Vaswani et al., 2017]. This allows the model
to dynamically determine relevance of each input fea-
ture stream when making a classification decision.

First, the three feature streams are concatenated:

fpre attention = concatenate(oline, ototal line, dtc)

Attention scores (sline, stotal line, stc) are then cal-
culated from fpre attention, each having separate dense
layer with a single output unit and linear activation:

sline = Ws,linefpre attention + bs,line

stotal line = Ws,total linefpre attention + bs,total line

stc = Ws,tcfpre attention + bs,tc

These scores are normalized using a softmax func-
tion to yield attention weights αline, αtotal line, αtc:

[αline, αtotal line, αtc] = softmax([sline, stotal line, stc])

Each of the original input feature streams to this
stage (oline, ototal line, dtc) is then element-wise multi-
plied by its corresponding attention weight:

o′line = αline · oline

o′total line = αtotal line · ototal line

d′tc = αtc · dtc

Finally, these weighted feature vectors are concate-
nated together to form the comprehensive feature
vector ffinal:

ffinal = concatenate(o′line, o
′
total line, d

′
tc)

The final feature vector is passed into two more
dense layers, both are using RELU function. The
final output layers is a dense layer with five units
corresponding to five target classes(BACKGROUND,
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CONCLUSIONS, METHODS, OBJECTIVE, RE-
SULTS), each layer produces raw score(logit) corre-
sponding to each class, which is used to compute loss
during training.

Let ffinal be the comprehensive feature vector from
the attention mechanism. The first dense layer com-
putes:

afinal,1 = ReLU(Wfinal,1ffinal + bfinal,1)

where Wfinal,1 and bfinal,1 are the weights and biases of
this layer (e.g., transforming ffinal to 256 units), and
ReLU is the Rectified Linear Unit activation func-
tion.

The second dense layer takes afinal,1 as input:

afinal,2 = ReLU(Wfinal,2afinal,1 + bfinal,2)

where Wfinal,2 and bfinal,2 are the weights and biases
of this layer (e.g., transforming afinal,1 to 128 units).
Finally, the output layer produces the logits for clas-
sification:

ologits = Woutputafinal,2 + boutput

where Woutput and boutput are the weights and bi-
ases of the output layer, transforming afinal,2 to C
dimensions (the number of classes). These ologits are
then typically used with a softmax function during
inference or a cross-entropy loss function (with log-
its) during training.

3.5 Model Compilation

The model is compiled using the categorical cross-
entropy loss function. The categorical cross-entropy
function is more stable than using a softmax activa-
tion on the output layer and then applying standard
categorical crossentropy. Adam optimizer is used
to optimize the training by using adaptive learning
rate algorithim. During training and validation, the
model perfomance is measured using the classifica-
tion accuracy. The model was trained on two T4
GPUS using kaggle Notebook.

3.6 Model Summary

Figure 01 depicts the major processing branches of
the model along with other parts like, dense layer

and activations.

Figure 1: Model Summary.
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4 Experiment

4.1 Dataset

The evaluation of the model is done on the PubMed
20k RCT dataset, which is collection of randomized
controlled trials (RCTs) from the PubMed database
of biomedical literature, which provides a standard
set of 5 sentence labels: objectives, background,
methods, results and conclusions.[Dernoncourt and
Lee, 2017]

Table 1: Dataset Statistics

|C| |V | Train Validation Test

5 68k 15k (195k) 2.5k (33k) 2.5k (33k)

4.2 Training

The model training process was optimized using
Adam optimizer, known for its adaptive learning al-
gorithm that adjusts based on learning rate.[Kingma
and Ba, 2015]. During training , the learnable pa-
rameters are iteratively updated for the purpose of
reducing value of the specified loss function. The only
parameters that are not updated are those associated
with BERT because it is kept frozen.

For regularization to prevent overfitting, dropout
is applied with a rate of 0.5. An additional dropout
layer is added after the dense layer that processes
concatenated output from the token and character
branches, to capture more robust set of features.

5 Results and Discussion

Table 2 provides comprehensive and comparative
analysis between the following traditional and deep
learning models, a simple logistic regression making
use of n-gram features extracted from the current sen-
tence and not using any surrounding sentences, the
second a deep learning model is the Forward-ANN
model proposed by [Lee and Dernoncourt, 2016], a
conditional random field employing n-grams feature
making use of both preceding and current sentence

when classifying the sentence, the third model is
again a deep learning model presented by Lui [2012]
that made use of a ANN with hybrid token embed-
ding layer a sentence label prediction layer, and a
label sequence optimization layer which acts as base-
line for our paper, and finally our model proposed in
the paper.

Table 2: Performance on PubMed 20k

Model PubMed 20k

LR 83.0

Forward ANN 86.1

CRF 89

Baseline model 89.3

Our model 90.57

Table 3: Classification Report

Label Precision Recall F1-Score Support

Background 0.75 0.85 0.80 3621

Conclusions 0.93 0.94 0.94 4571

Methods 0.94 0.95 0.94 9897

Objective 0.72 0.59 0.65 2333

Results 0.95 0.93 0.94 9713

The reasons our model performs better than other
models is because of

Leveraging Pre-trained Semantic Represen-
tations: The utilization of BERT model, fine tuned
on PubMed Dataset, allows model to work with rich,
context-aware token embeddings, leading to stronger
model performance. This method captures more nu-
ance and detailed semantic relationship , that simple
embedding may miss.[Devlin et al., 2019]

Capturing Character-Level Nuances: Sub-
word information is captured by model through use of
character-level processing. This character level pro-
cessing is useful in biomedical literature which often
contains specialized terminologies, abbreviations and
compound words.
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Figure 2: Confusion matrix.

Incorporating Positional Context: By making
use of both line number and total line number in
abstract, model learns to identify structural patterns
in the abstract since most abstracts are structured
in a specific way(for example Objective often comes
first, Results in the middle, Conclusions at the end).

By combing high level semantic understanding ,
fine grained character details, and structural abstract
positions, the model is better equipped to accurately
classify sentences into their respective rhetorical roles
within the PubMed RCT abstracts.

6 Conclusion

In this research paper, we propose a model mak-
ing use of multiple features from token embeddings
from a pre-trained BERT model, character-level em-
beddings generated by a Bidirectional LSTM, and
positional features that capture sentence locations
within an abstract. This multi-features learning of
the model helps model in understanding nuance de-
tails and subtle patterns in the text, leading to better
classification of sentences within the text. The effec-
tiveness of this method is demonstrated by increase
in accuracy as compared to the selected baseline.
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